top of page

References AGU2022 - Abstract ID:    1110602
A Struggled Rupture Initiation of the Mw 6.1 2009 L’Aquila earthquake

Abercrombie, R. E., & Rice, J. R. (2005). Can observations of earthquake scaling constrain slip weakening?. Geophysical Journal International, 162(2), 406-424.

 

Abercrombie, R. E., Poli, P., & Bannister, S. (2017). Earthquake directivity, orientation, and stress drop within the subducting plate at the Hikurangi margin, New Zealand. Journal of Geophysical Research: Solid Earth, 122(12), 10-176.

 

Anderson, J. G., & Hough, S. E. A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies. Bulletin of the Seismological Society of America, 74(5), 1969-1993 (1984).

 

Antonioli, A., Piccinini, D., Chiaraluce, L., & Cocco, M. (2005). Fluid flow and seismicity pattern: Evidence from the 1997 Umbria‐Marche (central Italy) seismic sequence. Geophysical Research Letters, 32(10).

 

Beeler, N. M., Abercrombie, R., & McGarr, A. (2006). Inferring earthquake source properties from laboratory observations and the scope of lab contributions to source physics. GEOPHYSICAL MONOGRAPH-AMERICAN GEOPHYSICAL UNION, 170, 99.

 

Beroza, G. C., & Ellsworth, W. L. (1996). Properties of the seismic nucleation phase. Tectonophysics, 261(1-3), 209-227.

 

Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python toolbox for seismology. Seismological Research Letters, 81(3), 530-533.

 

Boncio, P., Pizzi, A., Brozzetti, F., Pomposo, G., Lavecchia, G., Di Naccio, D., & Ferrarini, F. (2010). Coseismic ground deformation of the 6 April 2009 L'Aquila earthquake (central Italy, Mw6. 3). Geophysical Research Letters, 37(6).

 

Bryant, E. (2008). The underrated hazard. Springer.

 

Cabrera, L., Ruiz, S., Poli, P., Contreras-Reyes, E., Osses, A., & Mancini, R. (2021). Northern Chile intermediate-depth earthquakes controlled by plate hydration. Geophysical Journal International, 226(1), 78-90.

 

Cabrera, L., Poli, P., & Frank, W. B. (2022). Tracking the spatio‐temporal evolution of foreshocks preceding the Mw 6.12009 L’Aquila Earthquake. Journal of Geophysical Research: Solid Earth, e2021JB023888.

 

Chiaraluce, L., Valoroso, L., Piccinini, D., Di Stefano, R., & De Gori, P. (2011). The anatomy of the 2009 L'Aquila normal fault system (central Italy) imaged by high resolution foreshock and aftershock locations. Journal of Geophysical Research: Solid Earth, 116(B12).

 

Cirella, A., Piatanesi, A., Tinti, E., Chini, M., & Cocco, M. (2012). Complexity of the rupture process during the 2009 L'Aquila, Italy, earthquake. Geophysical Journal International, 190(1), 607-621.

 

Cocco, M., Aretusini, S., Cornelio, C., Nielsen, S., Spagnuolo, E., Tinti, E. & Di Toro, G. (20XX). Fracture energy and breakdown work during earthquakes. (In press) Annual Reviews in Earth Planetary Sciences. DOI 10.1146/annurev-earth-071822-100304.

 

Crotwell, H. P., Owens, T. J., & Ritsema, J. (1999). The TauP Toolkit: Flexible seismic travel-time and ray-path utilities. Seismological Research Letters, 70, 154-160.

 

Di Stefano, R., Chiarabba, C., Chiaraluce, L., Cocco, M., De Gori, P., Piccinini, D., & Valoroso, L. (2011). Fault zone properties affecting the rupture evolution of the 2009 (Mw 6.1) L'Aquila earthquake (central Italy): Insights from seismic tomography. Geophysical Research Letters, 38(10).

 

Ellsworth, W. L., & Beroza, G. C. (1995). Seismic evidence for an earthquake nucleation phase. Science, 268(5212), 851-855.

 

Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the royal society of London. Series A. Mathematical and physical sciences, 241(1226), 376-396.

 

Frank, W. B., Poli, P., & Perfettini, H. (2017). Mapping the rheology of the Central Chile subduction zone with aftershocks. Geophysical Research Letters, 44(11), 5374-5382.

 

Fujii, Y., & Satake, K. (2007). Tsunami source of the 2004 Sumatra–Andaman earthquake inferred from tide gauge and satellite data. Bulletin of the Seismological Society of America, 97(1A), S192-S207.

 

Gvirtzman, S., & Fineberg, J. (2021). Nucleation fronts ignite the interface rupture that initiates frictional motion. Nature Physics, 17(9), 1037-1042.

 

Iio, Y., Ohmi, S., Ikeda, R., Yamamoto, E., Ito, H., Sato, H., Kuwahara, Y., Ohminato, T., Shibazaki, B., & Ando, M. (1999). Slow initial phase generated by microearthquakes occurring in the western Nagano Prefecture, Japan‐The source effect‐. Geophysical research letters, 26(13), 1969-1972.

 

Kanamori, H., Anderson, D. L., & Heaton, T. H. (1998). Frictional melting during the rupture of the 1994 Bolivian earthquake. Science, 279(5352), 839-842.

 

Luzi L., Lanzano G., Felicetta C., D’Amico M. C., Russo E., Sgobba S., Pacor, F., & ORFEUS Working Group 5 (2020). Engineering Strong Motion Database (ESM) (Version 2.0). Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/ESM.2

 

Madariaga, R., Ruiz, S., Rivera, E., Leyton, F., & Baez, J. C. (2019). Near-field spectra of large earthquakes. Pure and Applied Geophysics, 176(3), 983-1001.

 

McLaskey, G. C. (2019). Earthquake initiation from laboratory observations and implications for foreshocks. Journal of Geophysical Research: Solid Earth, 124(12), 12882-12904.

 

Ohnaka, M. (2000). A physical scaling relation between the size of an earthquake and its nucleation zone size. Pure and applied geophysics, 157(11), 2259-2282.

 

Passelègue, F. X., Almakari, M., Dublanchet, P., Barras, F., Fortin, J., & Violay, M. (2020). Initial effective stress controls the nature of earthquakes. Nature communications, 11(1), 1-8.

 

Peng, Z., & Zhao, P. (2009). Migration of early aftershocks following the 2004 Parkfield earthquake. Nature Geoscience, 2(12), 877-881.

 

Poli, P., Prieto, G., Rivera, E., & Ruiz, S. (2016). Earthquakes initiation and thermal shear instability in the Hindu Kush intermediate depth nest. Geophysical Research Letters, 43(4), 1537-1542.

 

Poli, P., & Prieto, G. A. (2016). Global rupture parameters for deep and intermediate‐depth earthquakes. Journal of Geophysical Research: Solid Earth, 121(12), 8871-8887.

 

Poli, P., Marguin, V., Wang, Q., d'Agostino, N., & Johnson, P. (2020). Seasonal and coseismic velocity variation in the region of L'Aquila from single station measurements and implications for crustal rheology. Journal of Geophysical Research: Solid Earth, 125(7), e2019JB019316.

 

Rubinstein, S. M., Cohen, G., & Fineberg, J. (2004). Detachment fronts and the onset of dynamic friction. Nature, 430(7003), 1005-1009.

 

Sallarès, V., & Ranero, C. R. (2019). Upper-plate rigidity determines depth-varying rupture behaviour of megathrust earthquakes. Nature, 576(7785), 96-101.

 

Savage, M. K. (2010). The role of fluids in earthquake generation in the 2009 Mw 6.3 L'Aquila, Italy, earthquake and its foreshocks. Geology, 38(11), 1055-1056.

 

Terakawa, T., Zoporowski, A., Galvan, B., & Miller, S. A. (2010). High-pressure fluid at hypocentral depths in the L'Aquila region inferred from earthquake focal mechanisms. Geology, 38(11), 995-998.

 

Venkataraman, A., & Kanamori, H. (2004). Observational constraints on the fracture energy of subduction zone earthquakes. Journal of Geophysical Research: Solid Earth, 109(B5).

 

Weng, H., Ampuero, JP. Integrated rupture mechanics for slow slip events and earthquakes. Nat Commun 13, 7327 (2022). https://doi.org/10.1038/s41467-022-34927-w

bottom of page